VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (CBCS) VI-Semester Main Examinations, January-2021
 Introduction to Databases

(Open Elective-V)
Time: $\mathbf{2}$ hours
Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A (9 $\times 2=18$ Marks)

15. a) Write about closure of set of Functional dependency and explain with an example.
b) What is First Normal Form? Explain with an appropriate example.
16. a) Compare static and dynamic hashing.
b) Explain about how Bucket overflows are handled in hashing.
17. a) List the ACID properties. Explain the usefulness of each.
b) What is a recoverable schedule? Why is recoverability of schedules desirable?
18. a) Draw an ER diagram to represent bank customer and the accounts of various types in bank.
b) Write about various aggregate functions in SQL.
19. Answer any two of the following:
a)

Suppose that we decompose the schema $R=(A, B, C, D, E)$ into
($\mathrm{A}, \mathrm{B}, \mathrm{C}$)
(A,D,E)
Show that this decomposition is a lossless-join decomposition if the following set F of functional dependencies holds:

$$
\begin{gathered}
\mathrm{A} \rightarrow \mathrm{BC} \\
\mathrm{CD} \rightarrow \mathrm{E} \\
\mathrm{~B} \rightarrow \mathrm{D} \\
\mathrm{E} \rightarrow \mathrm{~A}
\end{gathered}
$$

b) Construct a $B+$ tree for the following set of key values:
$(2,3,5,9,12,16,18,20,28,30)$ Assume that the tree is initially empty and values are added in given order where the number of pointers that will fit in one node is 4 .
c) Consider the following two transactions:

T1: $\operatorname{read}(A)$;
$\operatorname{read}(\mathrm{B})$;
if $A=0$ then $B:=B+1$;
write (B).
T2: read(B);
read(A);
if $B=0$ then $A:=A+!$;
write (A).
Let the consistency requirement be $A=0$ V $B=0$, with $A=B=0$ the initial values. Show a concurrent execution of T1 and T2 that produces a non-serializable schedule?

7	2	3	$1,2,4$
7	2	3	$1,2,4$
7	2	4	$1,2,5$
7	2	4	$1,2,5$
7	1	5	$1,2,5$
7	3	5	$1,2,5$

7	3	1	1,2

$\begin{array}{llll}7 & 2 & 2 & 1,2,4\end{array}$
$\begin{array}{llll}7 & 4 & 3 & 1,2,4\end{array}$
$\begin{array}{llll}7 & 4 & 4 & 1,2,5\end{array}$

7	4	5	$1,2,5$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	62
2	Knowledge on application and analysis (Level-3 \& 4)	38
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	

